Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

He Liu, Miao Du, Ya-Mei Guo and Xian-He Bu*

Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: buxh@nankai.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.042$
$w R$ factor $=0.110$
Data-to-parameter ratio $=11.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

2,3-Bis(2-pyridinio)-5,8-dimethoxyquinoxaline dinitrate

In the crystal structure of the title compound, $\mathrm{C}_{20} \mathrm{H}_{18^{-}}$ $\mathrm{N}_{4} \mathrm{O}_{2}{ }^{2+} \cdot 2 \mathrm{NO}_{3}{ }^{-}$, two pyridinium rings form dihedral angles of 48.0 (2) and 33.3 (4) ${ }^{\circ}$ with the mean quinoxaline plane, and a dihedral angle of $52.6(2)^{\circ}$ with each other. The orientation of the pyridinium rings is such that their N atoms face each other. Both pyridinium $\mathrm{N}-\mathrm{H}$ groups participate in $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the O atoms of the nitrate anions. There exist significant $\pi-\pi$ interactions responsible for the formation of the stacks along the b axis of the crystal.

Comment

2,3-Bis(2-pyridyl)quinoxaline and its derivatives represent an important class of chelating agents which have been extensively studied over the last two decades. Most of the studies focused on the electrochemical and photochemical properties of their metal complexes (Balzani et al., 1996; Scott et al., 1999). Aromatic compounds of this type also exhibit protonsponge properties (Staab \& Saupe, 1988; Robertson et al., 1998), i.e. represent the species which can act as external proton acceptors through the formation of $\mathrm{N}-\mathrm{H} \cdots Y$ hydrogen bonds. In the present paper, we report the crystal structure of the nitrate salt of diprotonated 2,3-bis(2-pyridyl)-5,8-dimethoxyquinoxaline (Bpdq), i.e. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{2+} \cdot 2 \mathrm{NO}_{3}{ }^{-}$, (I).

(I)

The cation of (I) consists of a quinoxaline ring system substituted with two protonated pyridine rings and two methoxy groups (Fig. 1). The pyridine rings cannot be coplanar with each other or with the quinoxaline system, as the planar conformation would cause sterically unacceptable contacts between the pyridyl ortho-H atoms. In fact, the existence of the adjacent pyridinium substituents causes substantial out-of-plane twist even within the quinoxaline itself, the torsion angle $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 12-\mathrm{C} 18$ being 6.9 (3) ${ }^{\circ}$; the mean atomic displacement from the least-squares quinoxaline plane is 0.0324 (3) \AA. The pyridinium rings C12-C16/N3 and

Received 5 March 2001
Accepted 19 March 2001 Online 31 March 2001

Figure 1
ORTEPII (Johnson, 1976) view of diprotonated Bpdq shown with 30% probability ellipsoids.

Figure 2
The packing diagram showing the cationic stacks in the crystal of (I).

C17-C21/N4 form dihedral angles of 48.0 (2) and 33.3 (4) ${ }^{\circ}$, respectively, with the mean quinoxaline plane, and a dihedral angle of $52.6(2)^{\circ}$ with each other. The orientation of the pyridinium rings is such that their N atoms face each other. These geometrical characteristics are similar to those observed in the structures of the analogues of (I) (Rasmussen et al., 1990; Du et al., 2001).

Selected bond distances and angles are given in Table 1. The $\mathrm{C} 2-\mathrm{N} 1$ and $\mathrm{C} 3-\mathrm{N} 2$ bond distances $[1.313$ (2) and 1.322 (2) \AA, respectively] are noticeably shorter than $\mathrm{N} 1-\mathrm{C} 9$ and N2-C4 [1.355 (2) and 1.358 (2) \AA, respectively], which is typical for quinoxaline system geometry (Anthony et al., 1998; Rasmussen et al., 1990). All N - C bond lengths are well within the range of values normally considered standard for single $\mathrm{C}-\mathrm{N}$ and double $\mathrm{C}=\mathrm{N}$ bonds [1.47 (Sasada, 1984) and $1.28 \AA$ (Wang et al., 1998), respectively].

Each pyridinium $\mathrm{N}-\mathrm{H}$ group participates in $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the nitrate O atom (Fig. 2 and Table 2). Furthermore, the neighbouring cations in the crystal of (I)
show substantial $\pi-\pi$-stacking interactions; the closest approach between the quinoxaline rings is about $3.5 \AA$, with the cationic stacks stretching along the c axis of the crystal.

Experimental

2,3-Bis(2-pyridy)-5,8-dimethoxyquinoxaline (Bpdq) was prepared by the reaction of 1,4-dimethoxy-2,3-phenylenediamine $(0.4 \mathrm{~g}$, $2.4 \mathrm{mmol})$ and $2,2^{\prime}$-bipyridyl $(0.5 \mathrm{~g}, 2.4 \mathrm{mmol})$ in ethanol (30 ml) at reflux for 4 h under argon, by a method similar to that reported in the literature (Waterland et al., 1998). Orange single crystals of the title compound suitable for X-ray diffraction were obtained by slow diffusion of diethyl ether into the acetonitrile solution of Bpdq in the presence of HNO_{3}.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{2+} \cdot 2 \mathrm{NO}_{3}{ }^{-}$
$M_{r}=470.40$
Monoclinic, $P 2_{1} / c$
$a=16.1380(13) \AA$
$b=7.2682(6) \AA$
$c=18.0257(15) \AA$
$\beta=104.344(2)^{\circ}$
$V=2048.4(3) \AA^{3}$
$Z=4$
$D_{x}=1.525 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7963 reflections
$\theta=1.3-25.0^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, orange
$0.30 \times 0.20 \times 0.15 \mathrm{~mm}$

Data collection

Bruker SMART 1000 diffractometer
ω scans
Absorption correction: multi-scan
[SAINT (Bruker, 1998) and
$S A D A B S$ (Sheldrick, 1997)]
$T_{\min }=0.965, T_{\max }=0.982$
8042 measured reflections
3569 independent reflections
2323 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-15 \rightarrow 19$
$k=-7 \rightarrow 8$
$l=-21 \rightarrow 21$
Intensity decay: $<1 \%$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.110$
$S=0.97$
3569 reflections
309 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0555 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.01$
$\Delta \rho_{\text {max }}=0.29 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0151 (12)

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

N1-C2	$1.313(2)$	$\mathrm{N} 3-\mathrm{C} 16$	$1.333(2)$
N1-C9	$1.355(2)$	$\mathrm{N} 4-\mathrm{C} 18$	$1.343(2)$
N2-C3	$1.322(2)$	$\mathrm{N} 4-\mathrm{C} 19$	$1.333(3)$
N2-C4	$1.358(2)$	$\mathrm{O} 1-\mathrm{C} 11$	$1.424(2)$
N3-C12	$1.351(3)$	$\mathrm{O} 2-\mathrm{C} 10$	$1.432(3)$
C2-N1-C9	$118.07(17)$	$\mathrm{C} 19-\mathrm{N} 4-\mathrm{C} 18$	$122.47(18)$
C3-N2-C4	$118.35(17)$	$\mathrm{C} 8-\mathrm{O} 1-\mathrm{C} 11$	$117.52(18)$
C16-N3-C12	$122.51(19)$	$\mathrm{C} 5-\mathrm{O} 2-\mathrm{C} 10$	$116.03(16)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 7^{\mathrm{i}}$	0.86	1.92	$2.762(4)$	166
$\mathrm{~N} 4-\mathrm{H} 4 B \cdots \mathrm{O} 3$	0.86	1.82	$2.617(2)$	153

[^0]H -atoms positions were calculated and included in subsequent refinement in the riding model approximation.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 1998).

We gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 29971019), Tianjin Natural Science Foundation and the TransCentury Talents Training Program Foundation from the State Education Ministry of China.

References

Anthony, A., Desiraju, G. R., Jetti, R. K. R., Kuduva, S. S.,Madhavi, N. N. L., Nangia, A., Thaimattam, R. \& Thalladi, V. R. (1998). Cryst. Eng. 1, 1.

Balzani, V., Juris, A., Venturi, M., Campagna, S. \& Serroni, S. (1996). Chem. Rev. 96, 759-833.
Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Du, M., Bu, X.-H., Liu, H. \& Leng, X.-B. (2001). Acta Cryst. C57, 201-202.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rasmussen, S. C., Richter, M. M., Yi, E., Place, H. \& Brewer, K. J. (1990). Inorg. Chem. 29, 3926-3932.
Robertson, K. N., Bakshi, P. K., Lantos, S. D., Cameron, T. S. \& Knop, O. (1998). Can. J. Chem. 76, 583-611.

Sasada, Y. (1984). Molecular and Crystal Structures. In Chemistry Handbook, 3rd ed. Tokyo: The Chemical Society of Japan, Maruzen.
Scott, S. M., Gordon, K. C. \& Burrell, A. K. (1999). J. Chem. Soc. Dalton Trans. pp. 2669-2673.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Staab, H. A. \& Saupe, T. (1988). Angew. Chem. Int. Ed. Engl. 27, 865-879.
Wang, Z.-X., Jian, F.-F., Duan, C.-Y., Bai, Z.-P. \& You, X.-Z. (1998). Acta Cryst. C54, 1927-1929.
Waterland, M. R., Simpson, T. J., Gordon, K. C. \& Burrell, A. K. (1998). J. Chem. Soc. Dalton Trans. pp. 185-192.

[^0]: Symmetry code: (i) $x, 1+y, 1+z$.

